Thoth Children!!|
新規Thoth投稿
RRT-Connect
RRT-ConnectはRRTを用いてコンフィギュレーション空間における高次元空間の探索を効率よく行い、スタートからゴールまでのパスを見つけるアルゴリズム.
PV 352
Fav 0
2018.10.14
RRT
RRT(Rapidly-exploring Random Tree)は高次元空間における探索を効率的に比較的高速的に行うことのできる探索手法.これを用いて自由度の高いロボットアームの軌道探索や経路探索などが行われることが多い.アルゴリズムがシンプルで実装も容易.
PV 487
Fav 0
2018.10.14
タスク空間
タスク空間は、ロボット工学においてタスクを表現する上でもっとも自然な座標系を用いて表現した空間のこと.例えばある軌道でボールを動かしたいときは、(x,y,z)の座標系、剛体の位置を制御したいときは、姿勢を含めて(x,y,z,θ,γ,ψ)の6座標を使って表現する.
PV 282
Fav 0
2018.10.14
コンフィギュレーション空間
コンフィギュレーション空間(C-Space, Configuration Space)はロボットの経路計画、軌道計画等を考える上でロボットが取りうる姿勢や位置、関節角度等を表現する空間のこと.自由度が高いロボットではコンフィギュレーション空間が高次元になり、計算量が膨大になる.コンフィギュレーションとはロボットのパラメータの値を全て指定したもので、コンフィギュレーション空間はロボットが取りうる全ての値を指す.
PV 943
Fav 0
2018.10.14
力のつりあいと作用反作用の違い
力のつりあいと作用反作用の違いについてまとめているページです.対象は中学生の理科レベルです.力の釣り合いと作用反作用の違いがわからず同じ図に両方を書き込む間違いが多いです.しかし、何に注目するかによって書き込むべきものが異なります.
PV 1023
Fav 0
2018.10.14
平面と平面のなす角度
平面のなす角度は平面に垂直な法線ベクトルがなす角度から求めることができます.
PV 1514
Fav 0
2018.09.17
ベクトルのなす角度
二つのベクトルがあるときにそれらの間の角度を求める方法についてまとめます.これは平面ベクトルでも空間ベクトルでも行うことは一緒です.
PV 613
Fav 0
2018.09.17
ディフィー・ヘルマン鍵共有
ディフィー・ヘルマン鍵共有はお互いに共通鍵を送ることなく複数回のやりとりをすることで安全に共有鍵を持つことができる手法.中間者攻撃には弱く、また計算の処理も重い
PV 177
Fav 0
2018.09.17
優先度付きキュー
優先度付きキューはデータを入れているリストの中から優先度の高いものから順に要素を取り出すデータ構造.抽象的なデータ型であり、実装によって挙動が異なる.基本的に優先度順に取り出されるが、同一の優先度のデータがある場合にどのように振る舞うかは実装による.多くの場合はヒープを用いて実装されるため取り出し順序は不定.
PV 104
Fav 0
2018.09.17
DoG
DoG(Difference of two Gaussian)は、LoGでの重いフィルタ処理をガウシアンの差分によって近似し軽量化したフィルタ.各スケールσ、kσ、k^2σ、等σの大きさを変えてフィルタ処理したのちにその差分を計算.値が0になっているところがエッジ. 上記のような工夫をしても尚、σを大きくしたガウシアンフィルタの計算は重いため、σを大きくするのではなく、入力画像をダウンサンプリングすることでさらなる軽量化を行います
PV 436
Fav 0
2018.09.17
LoG
LoG(Laplacian of Gaussian)はガウシアンフィルタによって先にノイズを除去したのちにラプラシアンフィルタをかけることでエッジを抽出するフィルタです.用途としては、エッジの抽出やブロブの検出等が行えます.
PV 605
Fav 0
2018.09.17
SegNet
SegNetはFCNより解像度よくSemanticSegmentationを行うことができるネットワーク.UnPooling層をDecoderに用いることでより細かい領域分割ができることを可能にした.またUnpoolingを用いて省メモリになったことも特徴.
PV 160
Fav 0
2018.09.16
FCN (Semantic Segmentation)
FCN(Fully Convolutional Networks for Semantic Segmentation)は、FCNのネットワーク構造を用いてSemantic Segmentation(領域のクラス分類)を行っているネットワークです.ピクセルレベルでなんの物体なのかを推定します.全結合層を含まないためどのような大きさの画像に対しても適用できるのが特徴ですが、解像度が低くなりがちでまた境界あたりは分類の精度が低く曖昧になりがちです.
PV 196
Fav 0
2018.09.16
Slope One
Slope Oneはアイテム間協調フィルタリングの手法に似た手法の一つで、不明な評価値を他の評価値の平均差を使って単純に推定する.アルゴリズムが非常にシンプルであるが精度が高いため、様々なシステムで導入されている.
PV 129
Fav 0
2018.09.11
コンテンツベースフィルタリングとは
コンテンツベースフィルタリング(内容ベースフィルタリング)は、対象の商品またはアイテムの特徴量と、ユーザプロファイル(嗜好の傾向)の特徴量を算出しおすすめ商品を求めるフィルタリング技術.アイテムにはあらかじめ特徴的なキーワードを割り当てておく.ユーザの行動やアイテムの閲覧履歴等を参考にユーザの嗜好の特徴量をアイテムに記されているキーワード等から構築していく.ユーザの事前の情報がなくともある程度推薦を出せる.ユーザの嗜好の変化に合わせることや同じようなものばかりにならないようにすることがポイント.
PV 445
Fav 0
2018.09.11
アイテム間協調フィルタリング
アイテム間協調フィルタリング(Item-Item Collaborative Filtering)は、ユーザの購買履歴や評価の履歴を元に類似した評価を持つ商品を見つけ出し、ユーザにおすすめするフィルタリング技術.Amazonによって発表された手法で、ユーザベース協調フィルタリングより、「ユーザ数がアイテム数より多い時にもよい」「アイテムの類似度は変わりにくいため更新頻度が少ない」といった点が有利.
PV 396
Fav 0
2018.09.11
ユーザベース協調フィルタリング
ユーザベース協調フィルタリングはユーザの行動履歴や評価履歴を用いて各ユーザがどのように商品を扱ったかによって次におすすめする商品を決定するフィルタリング技術.あるユーザが同様の評価を行ったもの同様の評価を行っているユーザ、同様のものを買っているユーザを参考にまだ買っていないものを紹介する.この手法はユーザの情報から新しいものを推薦するメモリーベースの手法.
PV 395
Fav 0
2018.09.10
リヤプノフの安定判別法
リヤプノフの安定判別法を用いてシステムの解析が難しい場合でも、システムの状態の安定性を評価することができます.ここでの安定性はもちろんリヤプノフの意味での安定性を指します.解析的にシステムの解を求めて安定性を評価する方法をリヤプノフの第1法(Lyapunov's first method)と呼び、ここで紹介するようなエネルギー関数の考察によって安定性の解析を行うことを直接法、リヤプノフの第2法(Lyapunov's second method)と呼ぶ.
PV 313
Fav 0
2018.09.10
リヤプノフの安定性
リヤプノフの安定性に関してまとめているページです.主な用語としては、安定、漸近安定、一様安定、大域的漸近安定と呼ぶ状態がある.安定性は複数の定義のされ方があるため、「リアプノフの意味で安定」と明示的に呼ぶことがある.
PV 471
Fav 0
2018.09.10
HitTesting
HitTestingはユーザーがクリックした位置に対応したオブジェクトやエレメントを決定する過程を指す.HTML5などはクロスプラットフォームに対応するため、挙動が定められている.IOSにおいても再帰的にSubViewを見つけていくことで対象のViewを見つけ出す.
PV 80
Fav 0
2018.09.10
Pop技術
  • K
    点が三角形の内側か判定したい
  • S
    ロボットの力制御の種類
  • K
    同次変換行列
  • S
    GAN
  • K
    インピーダンス制御
  • S
    重力補償機構
  • K
    ベクトルを特定の平面に射影したい
  • S
    点群から検出したい
  • K
    ベクトルを別のベクトルに射影したい
  • S
    気体の可視化手法
  • K
    行列を分解して上下三角行列が欲しい
  • S
    ロボットエンドエフェクタの位置制御
  • K
    アドミッタンス制御
  • S
    オプティカルフロー
  • K
    点が直線上の右か左にあるか判定したい
  • S
    点群を間引きたい
  • K
    ヤコビ行列による逆運動学
  • S
    ニューラルネットワーク
  • K
    時系列間の類似度計算を選ぶ
  • S
    逆運動学
  • K
    パーティクルフィルタ
  • S
    ニューラルネット学習の工夫
  • K
    シャドウグラフによる可視化
  • S
    点群をデータ構造で持つ
  • K
    ピンホールとレンズの違いを知りたい
  • S
    RELU系活性化関数
  • K
    多変数関数の極大極小を判定したい
  • S
    点群から特徴量を出したい
  • K
    シンプルに逆行列を求めたい
  • S
    Convolution
  • K
    力制御
  • S
    ベクトル間の類似度が欲しい
  • K
    平面と平面のなす角度
  • S
    活性化関数基本
  • K
    確率分布間の差異で類似度を求めたい
  • S
    二値化フィルタ
  • K
    グラッドストーン・デールの式
  • S
    Pooling
  • K
    点群データから法線算出をしたい
  • S
    極大極小鞍点か判定したい
  • K
    シュリーレン法
  • S
    シートベルトの仕組みを知りたい
  • K
    勾配に注目したオプティカルフロー
  • S
    Sigmoid系活性化関数
  • K
    CTC損失関数
  • S
    DeepLearningとは
  • K
    Lucas Kanade法
  • S
    時系列間の類似度が欲しい
  • K
    点群から最近傍点を検出したい
  • S
    Adam系最適化関数
  • K
    点群を平面に近似したい
  • S
    いろいろな距離が欲しい
  • K
    オプティカルフローとは
  • S
    点群処理を実装したい
  • K
    点群の形状的局所特徴量を出したい
  • S
    点群から法線を出したい
  • K
    グレンジャー因果検定
  • S
    特殊な層
  • K
    文字列を簡単な置換による暗号化したい
  • S
    ロボットのリンクの数学的基礎
人気分野/目的
SNS
Facebookシェア このエントリーをはてなブックマークに追加