Thoth Children
ログイン
知識投稿
他サービス
Thothnator
Thoth Coworker
ウジャトで理解する学問
You Only Search Once(β)
Thoth Hieroglyph
ヒエログリフ変換
Thoth Children!!
|
Subject
学問
技術
言語
高校
中学
一般
Purpose
計算
物性
思考
道具
アルゴ
その他
新規
Thoth
投稿
Prev
14
15
16
17
18
19
20
21
22
Next
ヒープソート
大きさの順番になっているヒープを構築して、その最大または最小を取り出していくことを繰り返すソート
PV
86
Fav
0
2017.10.09
マージソート
対象の列を細かい部分的なデータ列に分割して、それらを小さいものから並べて統合をしていくソート.
PV
71
Fav
0
2017.10.09
選択ソート
対象の配列から最大値または最小値を探しそれを最初または最後に移動するソート
PV
66
Fav
0
2017.10.09
挿入ソート
既に整列してあるデータ列に追加要素を適切な位置に挿入していくソート.
PV
92
Fav
0
2017.10.09
バブルソート
隣り合う要素の大小を比較を繰り返して整列させるソートアルゴリズム
PV
77
Fav
0
2017.10.09
Global Average Pooling層
Global Average Pooling層によって最後の層において直接平均してクラスを作り出す。
PV
807
Fav
0
2017.09.18
DeepLearningを使ったプログラムを書く
実際にDeepLearning技術を使ったプログラムを書くために現在使われているライブラリや環境を紹介します。
PV
94
Fav
0
2017.09.18
AlexNet
AlexNetはAlex,Hintonらによって開発されたCNN.全部で8層からなりうち5つがConvolution層.2012年画像分類の大会LSVRCにて好成績を残して注目される.
PV
106
Fav
0
2017.09.18
LeNetとは
LeNet(5)とは1990年代に作成された一番初めにConvolutional Neural Netowrkの基礎にあたるものを提案し使用したネットワーク.MNISTにおいて当時から高い精度を出していた.
PV
299
Fav
0
2017.09.18
エッジを残して画像をぼかしたい
エッジを残して画像をぼかしたいときに使うフィルタをエッジ保存フィルタと呼ぶ.平滑化やガウシアンフィルタは全体をぼかすが、エッジ保存フィルタは輪郭線を残したままそれ以外の部分を平滑化する
PV
704
Fav
0
2017.09.14
画像をシンプルにぼかしたい
難しい処理をすることなくシンプルに画像をぼかす技術について紹介します.
PV
326
Fav
0
2017.09.14
Batch Normalization層
Batch Normalization層は近年提案されるどのネットワークにも大体使用される学習を安定させ高速化させる技術. ミニバッチごとの平均と分散を計算して正規化し、スケールとシフト補正をする.
PV
388
Fav
0
2017.09.13
ResNetとは
ResNetは2015年にMicrosoftより発表された152層からなるニューラルネットワーク. 今まで20層ほどで作られていたCNNを特別なユニットを挟むことで深くすることを可能にした.
PV
558
Fav
0
2017.09.13
ハイパーパラメータを調整する
ハイパーパラメータを調整することでDeep Learningの学習効率や精度を向上させることができます.
PV
145
Fav
0
2017.09.13
層の入力を加工する
DeepLearningにおいて、層の入力を工夫することで学習の性能を向上させることができます。
PV
123
Fav
0
2017.09.13
層を深くする
経験的に層を深くすることができれば必ず性能は上がるとされていました。近年は幅も大事という論文もでており、幅と深さのどちらがよいかは決着がついていないようです。
PV
146
Fav
0
2017.09.13
学習データを水増しする
英語ではData Augumentationと言います。学習データを加工したりノイズを乗せたりして学習データの種類を水増することによって、あたかも多くのデータがあるかのように見せて汎化性能をあげることができます。
PV
151
Fav
0
2017.09.13
LSTMとは
LSTMは時系列データのような連続したデータにおいて特に使用されるニューラルネットワーク。 翻訳、ビデオ等に対して有効に働く。
PV
110
Fav
0
2017.09.13
ソフトマージン
SVMにおいて入力されるデータが完全に分離できるものの場合その想定のもとハードマージンという分離を前提とする手法によって学習をしていた.しかし完全に分離できるものとは限らない場合にはうまく学習ができなくなってしまうため、多少分離できなくても許容するソフトマージンという手法が提案された.
PV
108
Fav
0
2017.09.13
カーネルトリック
カーネルトリックはSVMにおいて非線形なデータを別の空間で線形分離可能なデータに帰る手法
PV
193
Fav
0
2017.09.13
Prev
14
15
16
17
18
19
20
21
22
Next
Pop技術
K
点が三角形の内側か判定したい
S
ロボットの力制御の種類
K
同次変換行列
S
GAN
K
インピーダンス制御
S
重力補償機構
K
ベクトルを特定の平面に射影したい
S
点群から検出したい
K
ベクトルを別のベクトルに射影したい
S
気体の可視化手法
K
行列を分解して上下三角行列が欲しい
S
ロボットエンドエフェクタの位置制御
K
アドミッタンス制御
S
オプティカルフロー
K
点が直線上の右か左にあるか判定したい
S
点群を間引きたい
K
ヤコビ行列による逆運動学
S
ニューラルネットワーク
K
時系列間の類似度計算を選ぶ
S
逆運動学
K
パーティクルフィルタ
S
ニューラルネット学習の工夫
K
シャドウグラフによる可視化
S
点群をデータ構造で持つ
K
ピンホールとレンズの違いを知りたい
S
RELU系活性化関数
K
多変数関数の極大極小を判定したい
S
点群から特徴量を出したい
K
シンプルに逆行列を求めたい
S
Convolution
K
力制御
S
ベクトル間の類似度が欲しい
K
平面と平面のなす角度
S
活性化関数基本
K
確率分布間の差異で類似度を求めたい
S
二値化フィルタ
K
グラッドストーン・デールの式
S
Pooling
K
点群データから法線算出をしたい
S
極大極小鞍点か判定したい
K
シュリーレン法
S
シートベルトの仕組みを知りたい
K
勾配に注目したオプティカルフロー
S
Sigmoid系活性化関数
K
CTC損失関数
S
DeepLearningとは
K
Lucas Kanade法
S
時系列間の類似度が欲しい
K
点群から最近傍点を検出したい
S
Adam系最適化関数
K
点群を平面に近似したい
S
いろいろな距離が欲しい
K
オプティカルフローとは
S
点群処理を実装したい
K
点群の形状的局所特徴量を出したい
S
点群から法線を出したい
K
グレンジャー因果検定
S
特殊な層
K
文字列を簡単な置換による暗号化したい
S
ロボットのリンクの数学的基礎
人気分野/目的
SNS
Tweet
Follow @thothchildren
Tweets by thothchildren