$$\boldsymbol{x} = \left(
\begin{array}{c}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{array}
\right)$$
で\(\boldsymbol{A}\)が行列のとき
$$\frac{\partial \boldsymbol{ x }^T\boldsymbol{ A }}{\partial \boldsymbol{ x }} = \boldsymbol{ A }$$
$$
\begin{eqnarray}
\frac{\partial \boldsymbol{ x }^T\boldsymbol{ A }}{\partial \boldsymbol{ x }} &=& \frac{\partial
(x_1A_{11}+x_2A_{12}+\cdots+x_nA_{1n},
x_1A_{21}+x_2A_{22}+\cdots+x_nA_{2n},\cdots,
x_1A_{m1}+x_2A_{m2}+\cdots+x_nA_{mn})
}{\partial \boldsymbol{ x }} \\
&=& \left(
\begin{array}{cccc}
\frac{\partial (x_1A_{11}+x_2A_{12}+\cdots)}{\partial x_1} & \frac{\partial (\cdots + x_2A_{12}+x_3A_{13}+\cdots)}{\partial x_2} & \ldots & \frac{\partial (\cdots + x_{n-1}A_{1(n-1)}+x_nA_{1n})}{\partial x_n} \\
\frac{\partial (x_1A_{21}+x_2A_{22}+\cdots)}{\partial x_1} & \frac{\partial (\cdots + x_2A_{22}+x_3A_{23}+\cdots)}{\partial x_2} & \ldots & \frac{\partial (\cdots + x_{n-1}A_{2(n-1)}+x_nA_{2n})}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial (x_1A_{m1}+x_2A_{m2}+\cdots)}{\partial x_1} & \frac{\partial (\cdots + x_2A_{m2}+x_3A_{m3}+\cdots)}{\partial x_2} & \ldots & \frac{\partial (\cdots + x_{n-1}A_{m(n-1)}+x_nA_{mn})}{\partial x_n} \\
\end{array}
\right) \\
&=& \left(
\begin{array}{cccc}
A_{ 11 } & A_{ 12 } & \ldots & A_{ 1n } \\
A_{ 21 } & A_{ 22 } & \ldots & A_{ 2n } \\
\vdots & \vdots & \ddots & \vdots \\
A_{ m1 } & A_{ m2 } & \ldots & A_{ mn }
\end{array}
\right) \\
&=& \boldsymbol{ A }
\end{eqnarray}
$$