Thoth Children
ログイン
質問投稿
知識投稿
最適化関数
編集
最適化関数
編集
2017.9.3
69
Views
0
Watch
7
Knows
Watch登録
新分野登録
削除申請
一つ上へ
最適化関数基本
最適化関数基本
Adam系最適化関数
Adam系最適化関数
SGD系最適化関数
SGD系最適化関数
×
新しい分野を追加
×
新しい知識を追加
×
分野の削除申請
×
移動または削除を行うには理由を申請ください。
理由
他の分野の移動の場合は分野を設定してください。 削除要請される場合はそのまま下のボタンを押下してください.
分野:
学問
技術
言語
高校
中学
一般
物性
道具
思考
計算
アルゴ
その他
分野の説明を編集
×
分野のタイトルを編集
×
最適化関数の新規投稿
Q
未解決
Deep Learningの最適化関数選定に関して
2017.09.24
9
PV
0
Fav
K
Edition: 1
Momentum最適化関数
SGDではランダムにデータを選んでパラメータ更新を行ったことで値がばたつきなかなか収束しない.慣性項を加えたことで、パラメータ更新に勢いをつけ学習を早くした.
2017.09.13
75
PV
0
Fav
K
Edition: 1
RMSProp最適化関数
ニューラルネットワークの学習係数を自動で調整する最適化関数の一つ. Adagradで問題だった学習が進むにつれて学習係数が小さくなるのを回避. (その点ではAdadeltaと目的は同じ)
2017.09.13
105
PV
0
Fav
K
Edition: 1
SGD最適化関数
学習の更新を行うときに適当に一つ選択した訓練データを用いて誤差を計算していく確率的勾配降下法(Stochastic Gradient Descent).
2017.09.13
55
PV
0
Fav
K
Edition: 1
Adagrad最適化関数
学習係数を自動調整していく最適化関数の一つ. 過去の勾配と最新の勾配を元に各パラメータごとに学習率を調整するのが特徴. Adam, Adadelta, RMSPropはAdagradを改良したもの
2017.09.13
173
PV
0
Fav
K
Edition: 1
Adadelta最適化関数
学習係数を自動で調整する最適化関数. Adagradで学習が進むにつれて学習係数が0になってしまう点を改良した最適化関数. 単位を揃えることで学習係数の初期値を不要にしている.
2017.09.13
81
PV
0
Fav
K
Edition: 1
Adam最適化関数
学習係数を自動で調整させる最適化関数の一つ. Adagrad, RMSPropを改良し移動平均を付け加えた最適化関数.
2017.09.13
203
PV
0
Fav
K
Edition: 1
DeepLearningにおける最適化関数
最適化関数はニューラルネットワークにおいて学習率を学習しながら調整してくれます。 DeepLearningにおける最適化関数選びは大きな検討要素の一つです。 どれを選ぶかによっても大きく学習時間や結果に関わってきます。
2017.09.13
143
PV
0
Fav
最適化関数人気知識・質問
K
Edition: 1
Adam最適化関数
学習係数を自動で調整させる最適化関数の一つ. Adagrad, RMSPropを改良し移動平均を付け加えた最適化関数.
2017.09.13
203
PV
0
Fav
K
Edition: 1
Adagrad最適化関数
学習係数を自動調整していく最適化関数の一つ. 過去の勾配と最新の勾配を元に各パラメータごとに学習率を調整するのが特徴. Adam, Adadelta, RMSPropはAdagradを改良したもの
2017.09.13
173
PV
0
Fav
K
Edition: 1
DeepLearningにおける最適化関数
最適化関数はニューラルネットワークにおいて学習率を学習しながら調整してくれます。 DeepLearningにおける最適化関数選びは大きな検討要素の一つです。 どれを選ぶかによっても大きく学習時間や結果に関わってきます。
2017.09.13
143
PV
0
Fav
K
Edition: 1
RMSProp最適化関数
ニューラルネットワークの学習係数を自動で調整する最適化関数の一つ. Adagradで問題だった学習が進むにつれて学習係数が小さくなるのを回避. (その点ではAdadeltaと目的は同じ)
2017.09.13
105
PV
0
Fav
K
Edition: 1
Adadelta最適化関数
学習係数を自動で調整する最適化関数. Adagradで学習が進むにつれて学習係数が0になってしまう点を改良した最適化関数. 単位を揃えることで学習係数の初期値を不要にしている.
2017.09.13
81
PV
0
Fav
K
Edition: 1
Momentum最適化関数
SGDではランダムにデータを選んでパラメータ更新を行ったことで値がばたつきなかなか収束しない.慣性項を加えたことで、パラメータ更新に勢いをつけ学習を早くした.
2017.09.13
75
PV
0
Fav
K
Edition: 1
SGD最適化関数
学習の更新を行うときに適当に一つ選択した訓練データを用いて誤差を計算していく確率的勾配降下法(Stochastic Gradient Descent).
2017.09.13
55
PV
0
Fav
Q
未解決
Deep Learningの最適化関数選定に関して
2017.09.24
9
PV
0
Fav